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In this paper, the effects of adiabatic and isothermal conditions on the statistics in
compressible turbulent channel flow are investigated using direct numerical simulation
(DNS). DNS of two compressible turbulent channel flows (Cases 1 and 2) are
performed using a mixed Fourier Galerkin and B-spline collocation method. Case 1
is compressible turbulent channel flow between isothermal walls, which corresponds
to DNS performed by Coleman et al. (1995). Case 2 is the flow between adiabatic
and isothermal walls. The flow of Case 2 can be a very useful framework for the
present objective, since it is the simplest turbulent channel flow with an adiabatic wall
and provides ideal information for modelling the compressible turbulent flow near
the adiabatic wall. Note that compressible turbulent channel flow between adiabatic
walls is not stationary if there is no sink of heat. In Cases 1 and 2, the Mach number
based on the bulk velocity and sound speed at the isothermal wall is 1.5, and the
Reynolds number based on the bulk density, bulk velocity, channel half-width, and
viscosity at the isothermal wall is 3000.

To compare compressible and incompressible turbulent flows, DNS of two
incompressible turbulent channel flows with passive scalar transport (Cases A and
B) are performed using a mixed Fourier Galerkin and Chebyshev tau method. The
wall boundary conditions of Cases A and B correspond to those of Cases 1 and 2,
respectively. Case A corresponds to the DNS of Kim & Moin (1989). In Cases A and
B, the Reynolds number based on the friction velocity, the channel half-width, and
the kinematic viscosity is 150.

The mean velocity and temperature near adiabatic and isothermal walls for
compressible turbulent channel flow can be explained using the non-dimensional
heat flux and the friction Mach number. It is found that Morkovin’s hypothesis is
not applicable to the near-wall asymptotic behaviour of the wall-normal turbulence
intensity even if the variable property effect is taken into account. The mechanism of
the energy transfers among the internal energy, mean and turbulent kinetic energies
is investigated, and the difference between the energy transfers near isothermal and
adiabatic walls is revealed. Morkovin’s hypothesis is not applicable to the correlation
coefficient between velocity and temperature fluctuations near the adiabatic wall.

1. Introduction
It is important to clarify the detailed mechanism of wall-bounded compressible

turbulent flow for engineering and industrial applications. Since the 1950s, many



274 Y. Morinishi, S. Tamano and K. Nakabayashi

experimental studies have provided valuable knowledge about the friction coefficient,
the mean velocity profiles and so on (e.g. see Bradshaw 1977; Fernholz & Finley 1977,
1980; Spina, Smits & Robinson 1994; Smits & Dussauge 1996). The compressibility
effects are commonly divided into two types: a mean variable property effect due
to the variations in mean properties such as density and viscosity, and an effect
due to fluctuations of thermodynamic quantities, mean dilatation and its fluctuation.
Morkovin (1962) proposed the hypothesis that the compressibility effect was mainly
due to the variable property effect and that the turbulence structures of compressible
boundary layers were comparable with those of incompressible ones when the variable
property effect was taken into account (see Morkovin 1962; Bradshaw 1977; Smits &
Dussauge 1996). This hypothesis has long been widely acknowledged to be correct
in the study of the wall-bounded compressible turbulent flow, and is referred to as
‘Morkovin’s hypothesis’. In the analysis of wall-bounded compressible turbulent flow,
the Van Driest transformation (see Van Driest 1951; Rotta 1960), which is supported
by Morkovin’s hypothesis, is well known. A Reynolds analogy which relates the mass
transfer to the heat transfer is well known in incompressible turbulent shear flow
(see White 1991). Morkovin (1962) also reported that the Reynolds analogy could
be applied to the wall-bounded compressible turbulent flow. This concept is referred
to as the ‘Strong Reynolds Analogy (SRA)’. The SRA is applicable to the adiabatic
wall for compressible turbulent flow. Recently, some modified Reynolds analogies
applicable to the isothermal wall have been proposed by Gaviglio (1987), Rubesin
(1990) and Huang, Coleman & Bradshaw (1995).

Fernholz & Finley (1980) observed in compressible turbulent zero-pressure-gradient
boundary layer flows on isothermal and adiabatic walls that the Van Driest
transformed velocity profile agreed well with the data of incompressible turbulent
flow. On the other hand, Zhang et al. (1993) reported that the untransformed velocity
profile near the adiabatic wall agreed well with the data of incompressible turbulent
flow. Huang & Coleman (1994) pointed out that the Van Driest transformation did
not work well for low Reynolds number flow, while it was useful for high Reynolds
number flow (see also Fernholz & Finley 1980; Spina et al. 1994). In spite of many
experimental efforts, the mean velocity profile of wall-bounded compressible flow
remains unclear. Other statistics not sufficiently understood, because experimental
measurements, such as of thermodynamic state quantities in high-speed flow, are very
difficult (see Spina et al. 1994; Smits & Dussauge 1996). The mean temperature profile
in the wall-normal direction has in practice been often estimated by using the mean
velocity in the experimental study.

In the past decade, with the rapid growth of computational resources, direct
numerical simulations (DNS) have been performed as an alternative method to
investigate the wall-bounded compressible turbulent flow (e.g. Coleman, Kim &
Moser 1995; Guarini et al. 2000; Maeder, Adams & Kleiser 2001; Morinishi,
Tamano & Nakabayashi 2003). DNS of wall-bounded compressible turbulent flow is
appealing because it provides three-dimensional and time-dependent data which are
very difficult or even impossible to obtain experimentally. However, there is still a
scarcity of DNS results despite their engineering importance. Typical are the DNS
results of Coleman et al. (1995) for turbulent channel flow between isothermal walls,
using the DNS algorithm based on the Legendre Galerkin method. And Guarini
et al. (2000) performed a DNS of the boundary layer flow on an adiabatic wall,
using the DNS algorithm based on the B-spline Galerkin method. They reported
that the Van Driest transformed velocity agreed well with the data on the wall-
bounded incompressible turbulent flow. However, the influence of different wall
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boundary conditions (isothermal and adiabatic conditions) on the mean velocity and
temperature profiles has not been investigated. Comparison of compressible and
incompressible turbulent flows in terms of the temperature field in addition to the
velocity field is also very important for accurate understanding of the compressible
turbulent flow. However, there have been no studies to date in which the statistics
relating to the temperature of compressible turbulent flow are compared to those of
incompressible ones.

In terms of turbulence statistics, Coleman et al. (1995) and Guarini et al. (2000)
reported that the variable property effect should be taken into account in the scaling.
However, thermodynamic fluctuations such as density and temperature have not been
examined. So, Gatski & Sommer (1998) reported that Morkovin’s hypothesis was
applicable to the near-wall asymptotic behaviour of turbulence statistics not shown
in logarithmic coordinates. Huang et al. (1995) showed that their modified Reynolds
analogy agreed well with the DNS data of Coleman et al. (1995) for compressible
turbulent channel flow between isothermal walls. Guarini et al. (2000) showed that
the modified Reynolds analogy proposed by Huang et al. (1995) was effective for
boundary layer flow on an adiabatic wall. However, the applicability and usefulness
for other flows strongly affected by the opposite wall (e.g. the turbulent channel flow
between adiabatic and isothermal walls) have not been examined.

A detailed understanding of the energy transfer in wall-bounded compressible
turbulent flow requires data on the turbulent kinetic, mean kinetic and internal energy
budgets, because the energy is exchanged among them (see Lele 1994; Huang et al.
1995). However, fewer DNS data on the energy budgets for wall-bounded compressible
turbulent flow are available than on wall-bounded incompressible turbulent flow.
Huang et al. (1995) investigated the energy transfer near an isothermal wall using
the DNS data on compressible turbulent channel flow presented by Coleman et al.
(1995). Guarini et al. (2000) reported that the turbulent kinetic energy budget near
an adiabatic wall in compressible turbulent boundary layer flow was almost the
same as that of the corresponding wall-bounded incompressible flow. However, the
difference and similarity between energy transfers near isothermal and adiabatic walls
is still unknown. In addition, compressible and incompressible flows have not been
compared.

In order to understand wall-bounded compressible turbulent flow, it is very
important to clarify near-wall turbulence structures in addition to mean velocity
and temperature profiles, turbulence statistics and energy transfers. Knowledge on
the near-wall turbulence structure for incompressible turbulent flow was summarized
by Robinson (1991). On the other hand, there have only been a few studies of
near-wall turbulence structure for compressible turbulent flow. Coleman et al. (1995)
reported that streak structures near an isothermal wall became more coherent in the
streamwise direction as the Mach number increased. Guo & Adams (1995) performed
DNS of a compressible boundary layer flow developing on a laminar adiabatic wall,
an adiabatic wall with constant wall temperature, and showed that streak structures
near the wall were larger than those of incompressible turbulent flow. Wang &
Pletcher (1996) performed a large-eddy simulation (LES) of isothermal channel flow
between hot and cold walls for almost zero Mach number, and reported that the
cold wall side exhibited stronger coherence of the near-wall streak structure. LES
of turbulent channel flow with constant heat flux for almost zero Mach number
was also performed by Dailey & Pletcher (1999) who showed that the turbulent
structures appeared to be more coherent on the cold wall side and less coherent on
the heating wall side. However, why the modification of the near-wall streak structures
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occurs is still not understood. In particular, the detailed turbulence structures near
an adiabatic wall have not been found so far. It is also uncertain whether or not
Morkovin’s hypothesis is successful relative to turbulence structures near adiabatic
and isothermal walls.

The purpose of the present study is to investigate the detailed mechanisms in
wall-bounded compressible turbulent flow. In particular, wall-bounded flow with an
adiabatic wall is still not understood in spite of its engineering importance. In order to
clarify compressible turbulent flows near isothermal and adiabatic walls, we perform
DNS of compressible turbulent channel flow between adiabatic and isothermal walls,
which has not been done previously. The present study of compressible turbulent
channel flow between adiabatic and isothermal walls is also very important in
complementing the studies of Coleman et al. (1995) and Guarini et al. (2000).

There is still no universal theory for wall-bounded compressible turbulent flow.
Consequently, understanding has usually been obtained from comparison with
the incompressible case, for instance the Van Driest transformation. Therefore,
understanding of wall-bounded incompressible turbulent flow is also very important
for the wall-bounded compressible case. We focus on the similarity and difference
between compressible and incompressible turbulent channel flows, as well as the
effects of different boundary conditions on compressible turbulent flow. To clarify the
difference and similarity between compressible and incompressible turbulent channel
flows, DNS of incompressible turbulent channel flow with passive scalar transport
between adiabatic and isothermal walls is also carried out. This flow is one of
three specific situations distinguished by Teitel & Antonia (1993), and it has not
been previously studied by DNS. DNS of incompressible turbulent flow between
isothermal walls, which corresponds to that of Kim & Moin (1989), is performed for
comparison.

The present paper is arranged as follows. The details of the present DNS data are
provided in § 2. In § 3, the effects of the different thermal wall boundary conditions on
mean velocity and temperature profiles are explained. In § 4, the profiles of turbulence
statistics are discussed. In § 5, the turbulent kinetic, mean kinetic and internal energy
budgets are calculated and then the mechanism of energy transfer near isothermal and
adiabatic walls is investigated. In § 6, the near-wall turbulence structures near adiabatic
and isothermal walls are investigated. Key results are summarized and conclusions
are given in § 7. The equations governing compressible and incompressible flows are
given in the Appendices.

2. DNS details
2.1. Numerical methods

For compressible turbulent channel flow, we use the DNS algorithm based on
the B-spline collocation method in the wall-normal (x2) direction and the Fourier
Galerkin method in the streamwise and spanwise (x1–x3) directions. The eighth-
order B-spline, the resolving power of which is comparable to that of the spectral
method, is used in this study. In addition, the skew-symmetric form for the convection
term is used in the DNS algorithm to maintain numerical stability. The time-
advancement scheme is a third-order low-storage Runge–Kutta method. The detailed
DNS algorithm was presented in Morinishi et al. (2003), and the validity of the
present code was proved by comparing our results with those of existing DNS
of compressible turbulent channel flow (Coleman et al. 1995). For incompressible
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turbulent channel flows, the Chebyshev-tau method is used in the wall-normal
direction, and the Fourier Galerkin method is used in the streamwise and spanwise
directions. The continuity and Navier–Stokes equations are solved by the modified
Kleiser–Schumann method (Kleiser & Schumann 1980; Werne 1995). The skew-
symmetric form for the convection term is used to achieve a stable numerical
simulation. The semi-implicit time-marching algorithm is used where the diffusion
term is treated implicitly with the Crank–Nicolson scheme, and the third-order
Runge–Kutta scheme is used for all other terms. The validity of the incompressible
code was confirmed by comparing our results with those of the DNS of Kim & Moin
(1989) and Horiuti (1992) which were carried out using the same spatial discretization
method.

2.2. Numerical conditions

The non-dimensional parameters for the present simulations of compressible turbulent
channel flows (Cases 1 and 2) are the Reynolds number Re =3000, the Mach
number M = 1.5, the Prandtl number Pr =µcp/κ = 0.72, and the ratio of specific
heats γ = cp/cv = 1.4 (where κ is thermal conductivity, µ is molecular viscosity, cp

is specific heat at constant pressure, and cv is specific heat at constant volume).
The Reynolds number, Re = ρmUmH/µiw , is based on the bulk density, bulk velocity,
channel half-width, and viscosity at the isothermal wall, and the Mach number,
M = Um/(γRTiw)1/2 (where R = (γ − 1)cp/γ is the gas constant), is based on the bulk
velocity and sound speed at the isothermal wall. The low Reynolds and Mach numbers
do not make the present analysis useless, because our goal is to clarify the difference
and similarity between compressible turbulent flows near adiabatic and isothermal
walls. The viscosity is given by Sutherland’s law (see (A 5)), where S1 = 110.4 K and
Tiw = 293.15 K.

The non-dimensional parameters for the present simulations of incompressible
turbulent channel flow with passive scalar transport (Cases A and B) are the
Reynolds number Reτ = 150 and the Prandtl number Pr =0.72. The Reynolds number,
Reτ = uτH/ν, is based on the friction velocity, the channel half-width, and the
kinematic viscosity. Note that the Reynolds number Reτ is given by Reτ = H/δv

for compressible turbulent flow, where δv = µw/(ρwuτ ), uτ = (τw/ρw)1/2, and τw are the
viscous length scale, the friction velocity, and the wall shear stress, respectively.

The initial condition for Case 1 is as follows. The mean streamwise velocity
is given by superimposing random velocity fluctuations upon the profile based
on Spalding’s law (see Spalding 1961). The wall-normal and spanwise velocity
components are given as random fluctuations with zero mean values. The temperature
and density fluctuations are zero, and their mean values are uniform: 〈ρ〉x1−x3

/ρm =1
and 〈T 〉x1−x3

/Tiw = 1, where 〈 〉x1−x3
represents the spatial average over the x1- and x3-

directions. Note that the Reynolds average over time and the x1- and x3-directions is
represented by 〈 〉. The initial field for Case 2 is a flow field of Case 1. The no-slip wall
boundary condition is used for all cases. The Dirichlet or Neumam boundary condition
for the density is not imposed; instead the continuity equation is solved at the wall,
keeping the bulk density constant in time. The upper and lower walls of Case 1
are isothermal, and their temperatures are the same. The upper and lower walls of
Case 2 are adiabatic and isothermal, respectively. The wall boundary conditions of
Cases A and B correspond to those of Cases 1 and 2, respectively. The classification
of the computational cases corresponding to thermal wall boundary conditions is
shown in table 1. Cases 1I, 2I and 2A represent the isothermal wall side of Case 1,
the isothermal wall side of Case 2 and the adiabatic wall side of Case 2, respectively.
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Compressible Incompressible

Computational cases Case 1 Case 2 Case A Case B
Near isothermal wall Case 1I Case 2I Case AI Case BI
Near adiabatic wall – Case 2A – Case BA

Table 1. Classification of computational cases corresponding to thermal wall boundary
conditions.

Case Re Reτ M Pr γ L1 × L2 × L3 N1 × N2 × N3

1 3000 218 1.5 0.72 1.4 4πH × 2H × 4πH/3 120 × 180 × 120
2 3000 86.4 − 279 1.5 0.72 1.4 4πH × 2H × 4πH/3 120 × 240 × 120
A 2291 150 − 0.72 − 4πH × 2H × 4πH/3 128 × 129 × 128
B 2291 150 − 0.72 − 4πH × 2H × 4πH/3 128 × 129 × 128

Coleman et al. 3000 222 1.5 0.7 1.4 4πH × 2H × 4πH/3 144 × 119 × 80

Table 2. Physical and numerical simulation parameters.

Cases AI, BI and BA represent the isothermal wall side of Case A, the isothermal
wall side of Case B and the adiabatic wall side of Case B, respectively.

Grid spacing in the periodic directions is uniform for all cases. The wall-normal
collocation points are distributed by using a hyperbolic-tangent function for Cases 1
and 2. The wall-normal grid points are given by Gauss–Lobatto points for Cases A
and B. The physical and numerical parameters for all cases are given in table 2.
(N1, N2, N3) and (L1, L2, L3) are the number of grid points and computational region
in the x1-, x2- and x3-directions, respectively. In the table, parameters of Coleman et al.
(1995) are also presented for comparison.

The grid resolution is evaluated by using not only the Reynolds number based
on the viscous length scale, Reτ , but also the Reynolds number based on the semi-
local viscous length scale, Re∗

τ = H/δv∗, where δv∗ = 〈µ〉/(〈ρ〉uτ∗) and uτ∗ = (τw/〈ρ〉)1/2

are the semi-local viscous length scale and semi-local friction velocity, respectively.
Profiles of Re∗

τ are shown in figure 1. The semi-local wall unit y∗ = y/δv∗ is used in
the figure, instead of the usual wall unit y+ = y/δv . Grid resolution based on wall and
local variables for the present simulations is shown in table 3. The velocity field for
Cases A and B does not depend on the temperature field, so the resolution of Case
B is the same as that of Case A. The resolution of Cases 1 and 2 is comparable with
that of Coleman et al. (1995) and Guarini et al. (2000) for compressible turbulent
flow. The resolution of Cases A and B is better than that of Kim & Moin (1989)
and Horiuti (1992) for incompressible turbulent flow. The streamwise resolution
near the isothermal wall for compressible turbulent flow seems to be lower than
that of incompressible turbulent channel flow. However, when local scaling is used,
the resolution becomes comparable. One-dimensional energy spectra and two-point
correlations were also examined in Morinishi et al. (2003), and we confirmed that the
present DNS data had sufficient resolution and domain size. However, the spanwise
two-point correlation of density at the centre of the channel was relatively high for
Case 1, as it was for the simulation of Coleman et al. (1995). They argued that this
was caused by acoustic resonance and did not affect other statistics. No problems
caused by the acoustic effect appear in the present results of Cases 1 and 2 (see the
sections below).
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Figure 1. Profiles of Reynolds number based on the semi-local viscous length scale.

Case �x+
1 �x+

2 �x+
3 �x∗

1 �x∗
2 �x∗

3

1I 23 0.36–5.1 7.6 15–23 0.36–3.4 5.1–7.6
2I 29 0.35–4.8 9.7 14–29 0.35–2.4 4.8–9.7
2A 9.1 0.11–1.5 3.0 9.1–13 0.11–2.2 3.0–4.4
A (B) 15 0.045–3.7 4.9 15 0.045–3.7 4.9

Table 3. Grid resolution.

3. Mean velocity and temperature profiles
3.1. Wall laws of mean velocity and temperature

It is known from dimensional analysis that the mean velocity and temperature profiles
depend on the non-dimensional heat flux, Bq = qw/(ρwcpuτTw), and the friction Mach

number, Mτ = uτ/ (γRTw)1/2, when the Prandtl number Pr and the ratio of specific
heats γ are constants. Since Pr and γ are fixed in the present simulations, we consider
the effects of parameters Bq and Mτ on the mean velocity and temperature profiles.
The values of (−Bq , Mτ ) for Cases 1I, 2I and 2A are (0.048, 0.080), (0.059, 0.077) and
(0, 0.071), respectively. Parameters Bq and Mτ strongly depend on the mean density
as described later, and the variation in the mean density is generally large near the
wall in compressible turbulent flow. In this section, the wall laws of the mean velocity
and temperature profiles are briefly examined using Bq and Mτ (see Tamano 2002 for
details).

Assuming the length scale of turbulence, lu = κuy, and the temperature length scale,
lT = κT y, the mixing length theory leads to the following equations, respectively (Rotta
1960; Bradshaw 1977):

d〈u1〉
dy

=
(τw/〈ρ〉)1/2

κuy
, (3.1)

d〈T 〉
dy

= − τw〈u1〉 + qw

〈ρ〉cp(τw/〈ρ〉)1/2κT y
. (3.2)

The viscous friction work, τw〈u1〉, is induced from the fifth term on the right-hand
side of equation (A 3), and it does not appear in incompressible turbulent flow with
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passive scalar transport (cf. (B 3) and (A 3)). Equation (3.1) leads to the following
equation: (

〈ρ〉
ρw

)1/2
d〈u1〉+

dy+
=

1

κuy+
, (3.3)

where 〈u1〉+ = 〈u1〉/uτ is the mean velocity scaled by the friction velocity. The Van
Driest transformed velocity 〈u1〉+

VD (see Van Driest 1951) is defined as

〈u1〉+
VD =

∫ 〈u1〉+

0

(〈ρ〉/ρw)1/2d〈u1〉+. (3.4)

From (3.3) and (3.4), the log-law of 〈u1〉+
VD is obtained as 〈u1〉+

VD = ln y+/κu + B ,
where B is the additive constant. Assuming 〈ρ〉 = ρw , the log-law of 〈u1〉+ is given
by 〈u1〉+ = ln y+/κu + B . Note that the assumption of 〈ρ〉 = ρw is not correct in the
present results.

Next, in order to show the effects of Bq and Mτ on the mean velocities 〈u1〉+
VD and

〈u1〉+ explicitly, we use the relationship between 〈T 〉/Tw and 〈u1〉+ obtained from
(3.1) and (3.2) (see Huang, Bradshaw & Coakley 1994; Huang & Coleman 1994):

〈T 〉/Tw = 1 − PrtBq〈u1〉+ − PrtM
2
τ (γ − 1)〈u1〉+2/2, (3.5)

where Prt = κu/κT is the turbulent Prandtl number. Assuming that the pressure given
by the state equation (see (A 6)) is constant yields the relationship between density and
temperature, 〈ρ〉/ρw = Tw/〈T 〉. The relationship between 〈u1〉+

VD and 〈u1〉+ is given by

〈u1〉+
VD = E1/2[arcsin(A/D + 〈u1〉+/D) − arcsin(A/D)], (3.6)

where E =2/[PrtM
2
τ (γ − 1)], A= Bq/[(γ − 1)M2

τ ] and D = (A2 + E)1/2 (see Huang &
Coleman 1994). The rearranged mean velocity in the standard wall-units is given by

〈u1〉+ = D sin
[
ln(y+/y+

0 )
/(

κuE
1/2

)]
, (3.7)

where y+
0 = exp(−κuB) (see White 1991). In the case of Bq = Mτ = 0, the mean

velocities 〈u1〉+ and 〈u1〉+
VD are the same as the log-law for incompressible turbulent

flow. In the case of Mτ =0, the velocity 〈u1〉+ of (3.7) increases with the increase of
−Bq , while the transformed velocity 〈u1〉+

VD of (3.6) is independent of −Bq . In the case
of Bq = 0, the velocity 〈u1〉+ decreases with the increase of Mτ , while the transformed
velocity 〈u1〉+

VD is independent of Mτ .
The mean temperature 〈T 〉/Tw of (3.5) increases with the increase of −Bq and

decreases with the increase of Mτ . The relationship between 〈T 〉+ = (Tw −〈T 〉)/Tτ and
〈u1〉+,

〈T 〉+ = Prt〈u1〉+ + PrtM
2
τ (γ − 1)〈u1〉+2/(2Bq), (3.8)

is obtained in the case of Bq �=0 which corresponds to the non-adiabatic wall. The
friction temperature Tτ is defined as Tτ =BqTw . In the case of Mτ = 0, equation (3.8)
yields the similarity law of mean velocity and temperature, 〈T 〉+ =Prt〈u1〉+. The mean
temperature 〈T 〉+ of (3.8) increases with the increase of −Bq and decreases with the
increase of Mτ . Note that 〈T 〉+ depends on Bq even if Mτ is zero, because the mean
velocity 〈u1〉+ depends on Bq in the case of Mτ =0. Here, the log-law of the mean
temperature near the non-adiabatic wall in compressible turbulent flow depends on
the second term on the right-hand side of (3.8) which corresponds to the viscous
friction work, and it can usually be neglected in the incompressible case. On the
other hand, the log-law of the mean temperature for incompressible turbulent flow
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Figure 2. Profiles of mean streamwise velocity: 〈u1〉+ and 〈u1〉+
VD.

is 〈T 〉+ = (Prt /κu) ln y+ + C, where C is the additive constant (see White 1991). In
the following sections, we shall discuss the mean velocity and temperature profiles
obtained from the present DNS results, using the analysis in this section.

3.2. Mean velocity profiles

Figure 2 shows DNS results for mean velocities 〈u1〉+ and 〈u1〉+
VD. The figure shows

that the Van Driest transformed velocity 〈u1〉+
VD agrees well with the data of the

incompressible turbulent flow. Thus, the Van Driest transformation provides the
universal velocity profile, while the standard scaling does not work well because of
the failure of the assumption of 〈ρ〉 = ρw .

Next, the mean velocities 〈u1〉+ and 〈u1〉+
VD for y+ � 20, are compared under the

same thermal boundary condition. The profiles of mean velocities for Cases 2I and
2A which correspond to compressible turbulent flow near isothermal and adiabatic
walls are shown in figure 3. Using the numerical results of figure 3, the effects of the
parameters Bq and Mτ on the mean velocity are summarized as follows. The Van
Driest transformed velocity 〈u1〉+

VD of Cases 2I and 2A agrees well with the data of
Case A, because 〈u1〉+

VD is independent of Bq and Mτ . The velocity 〈u1〉+ of Case 2I
is larger than that of Case A because the effect of Bq is larger than that of Mτ . The
value of 〈u1〉+ for Case 2A is slightly smaller than that of Case A because of the
effect of Mτ . Unlike 〈u1〉+ of Case 2I, 〈u1〉+ of Case 2A is close to that of Case A.
This is probably due to the influence of the low-Reynolds-number effect near the
adiabatic wall, as mentioned in the Introduction. The profile of y+d〈u1〉+/dy+ shows
that the log-region of Case 2A is very small (see figure 5a).
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Figure 3. Profiles of mean streamwise velocity: (a) Case 2I and (b) Case 2A.

3.3. Mean temperature profiles

DNS results for mean temperature 〈T 〉/Tw are shown in figure 4(a). The temperature
〈T 〉/Tw for Case 2A becomes smaller than unity, because of the effect of Mτ . The
values of 〈T 〉/Tw for Cases 1I and 2I become larger than unity, because the effect of
Bq is larger than that of Mτ . The value of 〈T 〉/Tw for Case 2I is larger than that of
Case 1I because −Bq (=0.048) of Case 1I is smaller than −Bq (=0.059) of Case 2I,
and Mτ (=0.080) of Case 1I is larger than Mτ (=0.077) of Case 2I.

Profiles of mean temperature 〈T 〉+ are given in figure 4(b). The temperatures
〈T 〉+ of compressible turbulent flows (Cases 1I and 2I) are smaller than those of
incompressible turbulent flows (Cases AI and BI). The difference in 〈T 〉+ between
Cases 1I and 2I is explained in the same way as for 〈T 〉/Tw . The gradient of 〈T 〉+ for
Cases 2I and BI is large near the centre of the channel, because they are influenced
by the opposite wall which corresponds to the adiabatic wall.

Next, to clarify the logarithmic regions of velocity and temperature, the profiles
of y+d〈u1〉+/dy+ and y+d〈T 〉+/dy+ are investigated (see figure 5). The logarithmic
regions of the velocity and temperature correspond to the regions where y+d〈u1〉+/

dy+(= 1/κu) and y+d〈T 〉+/dy+(= 1/κT ) are constants, respectively. The logarithmic
region of velocity appears for all Cases, and the values of 1/κu for Cases 1I and 2I
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Figure 4. Profiles of mean temperature: (a) 〈T 〉/Tw and (b) 〈T 〉+.

are larger those for Cases 2A and A. No logarithmic region of the mean temperature
for Case 1I can be seen in figure 5(b). Although a plateau region is observed around
the minimum point of y+d〈T 〉+/dy+ for Cases 2I and BI, it is caused by the different
thermal wall boundary condition on the opposite wall. Since the second term on the
right-hand side of (3.8) that corresponds to the viscous friction work is not zero for
the compressible turbulent flow, the logarithmic region of temperature is not found for
Cases 1I and 2I. The logarithmic region of temperature is also not realized for Case AI
in spite of Mτ = 0, because of the low-Reynolds-number effect (Reτ = 150). The
logarithmic region of the mean temperature appears for the incompressible turbulent
channel flow with the higher Reynolds number (see Case CI in figure 5b). Case CI
represents the isothermal wall side of Case C, which has the same conditions as Case A,
except the Reynolds number Reτ = 300, the grid numbers (N1, N2, N3) = (128, 161,
128), and computational region (L1, L2, L3) = (2πH, 2H, 2πH/3).
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Figure 5. Similarity law of mean velocity and temperature: (a) y+d〈u1〉+/dy+ and
(b) y+d〈T 〉+/dy+.

4. Turbulence statistics
4.1. Profiles of turbulence statistics

The usefulness of the semi-local scaling is investigated by comparing the RMS velocity
fluctuations scaled by the friction velocity, (u′

α)
+
rms = 〈u′

αu
′
α〉1/2/uτ , with those scaled

by the semi-local friction velocity, (u′
α)

∗
rms = 〈u′

αu
′
α〉1/2/uτ∗, (α =1, 2, 3, no summation

for α) (see figure 6). The streamwise intensities of turbulence for Cases 1I and 2I
in the region y+ � 10, are larger than those of Case A. The streamwise intensity
of turbulence for Case 2A in the region y+ � 10, is smaller than that of Case A.
On the other hand, the semi-local scaling collapses the RMS velocity fluctuations
of the compressible turbulent flow onto those of the incompressible one. Namely,
Morkovin’s hypothesis is satisfied in the RMS velocity fluctuations. However, the
wall-normal and spanwise intensities of turbulence, (u′

2)
∗
rms and (u′

3)
∗
rms, for Case 2A

are slightly smaller than those of Case A. The same trend was also observed in the
turbulent channel flow with M =0 with variable properties between isothermal walls
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Figure 6. Profiles of RMS velocity fluctuations: (a) (u′
α)+rms (α = 1, 2, 3)

and (b) (u′
α)∗

rms (α =1, 2, 3).

by Nicoud (1999). The difference may be caused by the low-Reynolds-number effect
(see Antonia et al. 1992).

The relationship between RMS density and temperature fluctuations has not been
investigated to date. The density and temperature fluctuation profiles scaled by the
wall and local variables are compared with each other here. The profiles of the RMS
density and temperature fluctuations ρ ′

rms/ρw and T ′
rms/Tw in wall units are shown

in figure 7(a), and the profiles of ρ ′
rms/〈ρ〉 and T ′

rms/〈T 〉 in semi-local wall units are
shown in figure 7(b). The peak value of ρ ′

rms/ρw for Case 2A is almost twice that of
Case 2I, while the peak value of T ′

rms/Tw for Case 2I is almost twice that of Case 2A.
This corresponds to the isobaric change. On the other hand, the RMS temperature
fluctuation T ′

rms/〈T 〉 is almost the same as the RMS density fluctuation ρ ′
rms/〈ρ〉,

except that the RMS temperature fluctuation on the isothermal wall is zero. Further
investigation of the appropriate scaling for RMS density and temperature fluctuations
is required.
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Figure 7. Profiles of thermodynamic fluctuations: (a) ρ ′
rms/ρw and T ′

rms/Tw ,
(b) ρ ′

rms/〈ρ〉 and T ′
rms/〈T 〉.

Next, we investigate the universal scaling method with respect to the Reynolds shear
stress. The Favre average of a quantity φ is given by {φ} = 〈ρφ〉/〈ρ〉 and ′′ represents
the turbulent fluctuation with respect to the Favre average. The relationships between
averaging operations 〈 〉 and { } are as follows:

〈φ′′〉 = 〈φ〉 − {φ}, (4.1)

{φ′′ψ ′′} = 〈φ′ψ ′〉 − 〈φ′′〉〈ψ ′′〉 + 〈ρ ′φ′ψ ′〉/〈ρ〉. (4.2)

The non-dimensional Reynolds shear stresses are shown in figure 8. The
Reynolds shear stresses scaled by the wall variables, −〈ρu′

1u
′
2〉+ = −〈ρu′

1u
′
2〉/(ρwu2

τ ),
−〈ρ〉〈u′

1u
′
2〉+/ρw = −〈ρ〉〈u′

1u
′
2〉/(ρwu2

τ ) and −〈ρ〉{u′′
1u

′′
2}+/ρw = −〈ρ〉{u′′

1u
′′
2}/(ρwu2

τ ),
have almost the same value, and the Reynolds shear stresses scaled by the local and
semi-local variables, −〈u′

1u
′
2〉∗ = −〈ρ〉〈u′

1u
′
2〉/(〈ρ〉u2

τ∗), −〈ρu′
1u

′
2〉∗ = −〈ρu′

1u
′
2〉/(〈ρ〉u2

τ∗)
and −{u′′

1u
′′
2}∗ = −〈ρ〉{u′′

1u
′′
2}/(〈ρ〉u2

τ∗) coincide with each other. This indicates that
the difference in the Reynolds shear stress between Favre and Reynolds averages
is negligible. This is because the second and third terms on the right-hand side of
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Figure 8. Profiles of Reynolds shear stresses.

(4.2) are negligible compared with the first term in the present data. Note that these
Reynolds stresses collapse to the same form, provided that the density is constant.
The Reynolds shear stresses scaled by the wall variables for Cases 1I and 2I are
smaller than that of Case A for y+ < 40 and are almost the same as that of Case
A for y+ � 40. The Reynolds shear stress scaled by the wall variables for Case 2A
is almost the same as that of Case A for y+ � 20 and are smaller than that of
Case A for y+ > 20. On the other hand, −〈u′

1u
′
2〉∗, −〈ρu′

1u
′
2〉∗ and −{u′′

1u
′′
2}∗ have

almost the same value as Case A near adiabatic and isothermal walls. Coleman et al.
(1995), Guarini et al. (2000) and So et al. (1998) used −〈ρu′

1u
′
2〉+, −〈ρ〉〈u′

1u
′
2〉+/ρw
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Figure 9. Profiles of turbulent heat fluxes.

and −〈ρ〉{u′′
1u

′′
2}+/ρw for the scaling of the Reynolds shear stress, respectively. In the

present results, these scaling methods collapse the Reynolds shear stresses onto data
for the incompressible turbulent flow (Case A) in the region y+ � 40 on the isothermal
wall side and in the region y+ � 20 on the adiabatic wall side.

Figure 9 shows the profiles of the turbulent heat flux, −〈ρu′
2T

′〉/(ρwuτTw) and
−〈ρu′

2T
′〉/(〈ρ〉uτ∗〈T 〉). The sign of the turbulent heat flux of Cases 1I and 2I is

opposite to that of Case 2A. Unlike the Reynolds shear stress, the turbulent heat flux
does not have a universal profile in the present result, because the turbulent heat flux
is directly and strongly influenced by the thermal boundary condition.

4.2. Near-wall asymptotic behaviour

4.2.1. Analytical estimates for near-wall asymptotic behaviour

The near-wall asymptotic behaviour for Reynolds and Favre averages have been
theoretically estimated, when the turbulent fluctuations φ′ and φ′′ with respect to
Reynolds and Favre averages of φ are expanded in terms of y with boundary
conditions. Since the density at the wall is governed by the continuity equation, the
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Case (u′
1)rms (u′

2)rms (u′
3)rms 〈k〉 εk ρ ′

rms T ′
rms p′

rms −〈u′
1u

′
2〉 −〈u′

2T
′〉

1I, 2I 1 1 1 2 0 0 1 0 2 2
2A 1 1 1 2 0 0 0 0 2 1
AI, BI 1 2 1 2 0 – 1 0 3 3
BA 1 2 1 2 0 – 0 0 3 2

Table 4. Power index n (φ ∝ yn) of near-wall asymptotic behaviour.

Figure 10. Near-wall asymptotic behaviour: (a) (u′
2)

+
rms and (b) [〈ρ〉{u′′2

2 }/(ρwu2
τ )]

1/2.

mean density approaches a constant non-zero value with a decrease of y+ for Cases 1I,
2I and 2A. The continuity equation and the non-slip wall boundary condition
provide the relation at the wall, ∂ui/∂xi |w = ∂ρ/∂t |w/ρw . The density varies in time
and space in the present compressible simulations, which yields ∂uj/∂xj |w �= 0.
As a result, ∂u′

2/∂x2|w and ∂u′′
2/∂x2|w are not zero for Cases 1 and 2. On the

other hand, the continuity equation gives ∂u′
2/∂x2|w = 0 for incompressible turbulent

flow. Regarding the wall boundary conditions, the near-wall asymptotic behaviour
of (u′

α)rms (α = 1, 2, 3), 〈k〉 = 〈u′
iu

′
i〉/2, εk (see § 5.2), ρ ′

rms, p′
rms, T ′

rms, −〈u′
1u

′
2〉 and

−〈u′
2T

′〉 is summarized in table 4. Note that the near-wall asymptotic behaviour
of (u′

2)rms, −〈u′
1u

′
2〉 and −〈u′

2T
′〉 for compressible turbulent flow is different from the

corresponding incompressible cases.

4.2.2. Near-wall asymptotic behaviour of turbulence statistics

The difference in scaling has been investigated for the wall-normal RMS velocities
(u′

2)
+
rms and [〈ρ〉{u′′2

2 }/(ρwu2
τ )]

1/2 (see figure 10). The wall-normal intensities of
turbulence, (u′

2)
+
rms, for Cases 1I, 2I and 2A vary linearly with a decrease of y+,

while those of Case A vary linearly with the decrease of y+2 as shown in table 4.
The near-wall asymptotic behaviour of [〈ρ〉{u′′2

2 }/(ρwu2
τ )]

1/2 is the same as that of
(u′

2)
+
rms, where the range of O(y+0) near the adiabatic wall is narrower than that

near the isothermal wall. This is because the boundary conditions of Favre and
Reynolds averages are not different, and the density condition, 〈ρ〉/ρw ∝ O(y+0), is
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satisfied. On the other hand, So et al. (1998), using Morkovin’s hypothesis, reported
that the near-wall asymptotic behaviour of [〈ρ〉{u′′2

2 }/(ρwu2
τ )]

1/2 became equal to
that of the incompressible turbulent flow, because they did not compare the near-
wall asymptotic behaviour for compressible and incompressible turbulent flows in
logarithmic coordinates. The near-wall asymptotic behaviour of the wall-normal
RMS velocity fluctuation for the compressible turbulent flow is not equal to that for
the incompressible case, even if the mean density variation is taken into account for
the scaling. Thus, Morkovin’s hypothesis is not applicable to near-wall asymptotic
behaviour.

We confirmed that the near-wall asymptotic behaviour of the other statistics
corresponded to the theoretical behaviour in table 4, except for the Reynolds shear
stress and turbulent heat flux whose near-wall asymptotic behaviour was not obvious
for the compressible turbulent flow because of the small dilatational effect at the wall
(see Tamano 2002 for details). The relation between near-wall asymptotic behaviour
and the Mach number will be considered in future work.

4.3. Reynolds analogies

Morkovin (1962) proposed five SRA relations for the adiabatic wall. One of them is

T ′/〈T 〉
(γ − 1)〈M〉2u′

1/〈u1〉 ≈ 1. (4.3)

The Reynolds average is used in (4.3) for simplicity. We confirmed that the difference
between Favre and Reynolds averages was negligible. Gaviglio (1987), Rubesin (1990)
and Huang et al. (1995) presented modified Reynolds analogies (GSRA, RSRA and
HSRA) which could apply to an isothermal wall. They are given for adiabatic and
isothermal walls as follows:

T ′/〈T 〉
(γ − 1)〈M〉2u′

1/〈u1〉 ≈ 1

h(1 − g∂〈Tt〉/∂〈T 〉) , (4.4)

T ′/〈T 〉
(γ − 1)〈M〉2u′

1/〈u1〉 ≈ 1

h(g∂〈Tt〉/∂〈T 〉 − 1)
, (4.5)

where Tt = T + u2
i /(2cp) is a total temperature and 〈M〉 = 〈u1〉/

(
(γ − 1)cp〈T 〉

)1/2
is

a local Mach number. The factors (g, h) of GSRA, RSRA and HSRA are (1, 1),
(1, 1.34) and (1, Prt ), respectively. If (g, h) are (0, 1), the form of (4.4) becomes the
same as that of (4.3). GSRA and HSRA are based on the mixing length theory
with respect to the streamwise velocity and temperature fluctuations. The turbulent
Prandtl number in HSRA is defined as, Prt = {u′′

2u
′′
1} ∂{T }/∂y/({u′′

2T
′′} ∂{u1}/∂y). To

examine the applicability and usefulness of the SRA, GSRA, RSRA and HSRA, we
introduce a criterion:

G ≡ 〈T ′2〉1/2/〈T 〉
(γ − 1)〈M〉2

〈
u′

1
2
〉1/2

/〈u1〉

(
h

∣∣∣∣g ∂〈Tt〉
∂〈T 〉 − 1

∣∣∣∣
)

. (4.6)

Note that the root-mean squares 〈u′
1
2〉1/2 and 〈T ′2〉1/2 are used instead of u′

1 and T ′.
The model yields the exact value for G = 1.

The profiles of G for Cases 1I, 2I and 2A are shown in figure 11, where SRA near
the isothermal wall is also considered for comparison. The values of G for SRA are
greatly different from unity for Cases 1I and 2I. Although the SRA is satisfied near
the adiabatic wall in Guarini et al. (2000), the SRA is not successful for Case 2A. The
reason is explained below. The SRA is available under the assumption that the total
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Figure 11. Strong Reynolds analogy and modified Reynolds analogies: (a) Case 1I,
(b) Case 2I and (c) Case 2A.

temperature fluctuation is negligible compared to the static temperature fluctuation.
When the above assumption is not satisfied, the 〈T ′2〉/〈T 〉2 
 (〈T ′

t
2〉 − 2〈T ′T ′

t 〉)/〈T 〉2

condition presented by Guarini et al. (2000) must be satisfied. However, we confirmed
that both the assumption and condition were not satisfied for Case 2A.

The region of G � 1 of HSRA is larger than that of GSRA for Case 1I, because
the turbulent Prandtl number is treated as a variable in HSRA and unity in GSRA.
The values of G for HSRA and GSRA for Cases 2I and 2A are almost unity in the
region y/H < 0.6 and decrease gradually in the region y/H > 0.6 where the influence
of the opposite wall is not negligible. The value of G for RSRA is larger than those
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Figure 12. Mean Favre-averaged fluctuations: (a) 〈u′′
1〉, (b) 〈u′′

2〉 and (c) 〈T ′′〉.

for HSRA and GSRA for all cases. It is found that the existing modified Reynolds
analogies do not completely agree with the DNS data on the compressible turbulent
flow between adiabatic and isothermal walls.

Huang et al. (1995) also proposed the model for mean Favre-averaged fluctuations
〈φ′′〉:

〈φ′′〉 = {u′′
2T

′′}{u′′
1φ

′′}/({T }{u′′
1u

′′
2}), (4.7)

using a new strong Reynolds analogy. Figure 12 shows comparisons of the present
DNS results of Cases 2I and 2A with (4.7) for 〈u′′

1〉, 〈u′′
2〉 and 〈T ′′〉. The model of

Huang et al. almost agrees with the DNS results for 〈u′′
1〉 in the region y/H < 0.5

where the influence of the opposite wall is negligible. The agreement on 〈u′′
2〉 is very
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good. The difference in 〈T ′′〉 between the model and the DNS result for Case 2A is
slightly large in the region y/H > 0.2.

5. Energy transfers
5.1. Conservation equations

The Favre-averaged mean-flow kinetic energy {K}, the Favre-averaged turbulent
kinetic energy {k}, the Favre-fluctuation mean-flow kinetic energy K ′′ and the Favre-
fluctuation turbulent kinetic energy k′′ are defined as {K} ≡ {ui}2/2, {k} ≡ {u′′

i u
′′
i }/2,

K ′′ ≡ {ui}u′′
i and k′′ ≡ u′′

i u
′′
i /2 − {k}, respectively. The continuity, momentum and

total energy equations are as follows in fully developed turbulent channel flow (see
Huang et al. 1995);

∂〈ρ〉{u2}
∂x2

= 0, (5.1)

∂〈ρ〉{ui}{u2}
∂x2

=
∂〈τi2〉
∂x2

− ∂〈ρ〉{u′′
i u

′′
2}

∂x2

+ 〈ρ〉fi, (5.2)

∂〈ρ〉{u2}[{K} + {k} + cv{T } + 〈p〉/〈ρ〉]
∂x2

=
∂[〈τi2〉〈ui〉 + 〈τ ′

i2u
′
i〉 − 〈q2〉]

∂x2

− ∂[〈ρ〉{u′′
2K

′′} + 〈ρ〉{u′′
2k

′′} + 〈ρ〉cp{u′′
2T

′′}]
∂x2

+ 〈ρ〉f1{u1}, (5.3)

where {u′′
2K

′′} = {u′′
2u

′′
i }{ui} and {u′′

2k
′′} = {u2uiui}/2 − {u2}{ui}{ui}/2 − {u′′

2u
′′
i }{ui} −

{u′′
i u

′′
i }{u2}/2 . The averaged state equation is 〈p〉 = (γ −1)cp〈ρ〉{T }/γ . The Reynolds

averaged viscous stress tensor 〈τij 〉 is defined as

〈τij 〉 = 〈µ〉
(

∂〈ui〉
∂xj

+
∂〈uj 〉
∂xi

)
− 2

3
〈µ〉〈d〉δij +

〈
µ′

(
∂u′

i

∂xj

+
∂u′

j

∂xi

)〉
− 2

3
〈µ′d ′〉δij , (5.4)

where 〈d〉 = ∂〈uj 〉/∂xj and d ′ = ∂u′
j /∂xj . The fluctuation viscous stress tensor,

τ ′
ij = τij − 〈τij 〉, is defined as

τ ′
ij = 〈µ〉

(
∂u′

i

∂xj

+
∂u′

j

∂xi

)
−

〈
µ′

(
∂u′

i

∂xj

+
∂u′

j

∂xi

)〉
− 2

3
〈µ〉d ′δij +

2

3
〈µ′d ′〉δij

+ µ′
(

∂u′
i

∂xj

+
∂u′

j

∂xi

)
− 2

3
µ′d ′δij + µ′

(
∂〈ui〉
∂xj

+
∂〈uj 〉
∂xi

)
− 2

3
µ′〈d〉δij . (5.5)

The Reynolds-averaged heat flux is given by 〈q2〉 = − 〈κ〉∂〈T 〉/∂x2 − 〈κ ′∂T ′/∂x2〉 .
The total energy is defined as the sum of the turbulent kinetic energy {k}, the mean

kinetic energy {K} and the internal energy, {e} = cv{T }, and it should be conserved
in compressible turbulent channel flow. We confirmed that the conservation of the
total energy was satisfied in the present simulations of Cases 1 and 2. On the other
hand, there are energy transfers among {k}, {K} and {e}. In the subsequent sections,
we shall clarify the mechanism of energy transfer through these energy budgets.

5.2. Energy budgets

The turbulent kinetic energy equation is

Pk + Dk − εk + Ck = 0, (5.6)

where the production Pk = −〈ρ〉{u′′
1u

′′
2}∂{u1}/∂x2, diffusion Dk = ∂[〈τ ′

i2u
′
i〉−〈ρ〉{u′′

2k
′′}−

〈p′u′
2〉]/∂x2, dissipation per unit volume εk = 〈τ ′

ij ∂u′
i/∂xj 〉 and compressibility
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Figure 13. Energy transfer of wall-bounded compressible turbulent flow: 1. Pk( = εTK), 2. Ck1,
3. Ck2, 4c. εVKc, 4ic. εVKi, 5. CK1, 6c. 〈ρ〉εcc , 6ic. 〈ρ〉εci , 7. Ck3. These terms are defined in § § 5.2
and 5.4. Terms 4c, 4ic, 6c and 6ic are irreversible. Dashed arrows indicate compressibility
terms.

term Ck = −Ck1 + Ck2 + Ck3, where Ck1 = 〈u′′
2〉∂〈p〉/∂x2, Ck2 = 〈u′′

i 〉∂〈τi2〉/∂x2 and
Ck3 = 〈p′∂u′

k/∂xk〉. The mean kinetic energy equation is

DK − εTK − εVK + CK + FK = 0, (5.7)

where the diffusion DK = ∂[〈τi2〉〈ui〉 − 〈ρ〉{u′′
2K

′′} − 〈p〉〈u2〉]/∂x2, turbulent dissipation
per unit volume εTK(= Pk), viscous dissipation per unit volume εVK = 〈τi2〉∂〈ui〉/∂x2,
compressibility term CK =Ck1 − Ck2 + CK1, CK1 = 〈p〉∂〈u2〉/∂x2, and force term
FK = 〈ρ〉f1{u1}. After turbulent kinetic and mean kinetic energy equations are
subtracted from the total energy equation (5.3), the internal energy equation is
obtained as

De + εVK + εk − CK1 − Ck3 = 0, (5.8)

where De = De1 + De2 is the diffusion term, De1 = −∂〈ρ〉cv{u′′
2T

′′}/∂x2, and
De2 = −∂〈q2〉/∂x2 . From (5.6), (5.7) and (5.8), the energy transfers among turbulent
kinetic, mean kinetic and internal energies are represented as seven terms (see Huang
et al. 1995). 1. Pk( = εTK), 2. Ck1, 3. Ck2, 4. εVK, 5. CK1, 6. εk , 7. Ck3. Terms 2, 3, 5 and
7 represent the compressibility terms. Terms 4 and 6 which represent the irreversible
energy transfers can be divided into the terms involving fluctuating dilatation or
fluctuating viscosity (4c, 6c) and the variable-density extended terms of the pseudo-
dissipation used in the incompressible flow (4ic, 6ic), respectively (see § 5.4 for details).
Terms 4 and 6 were not divided in the study of Huang et al. (1995). Energy transfers
for wall-bounded compressible turbulent flow are summarized in figure 13. The dashed
arrows represent the compressibility terms.

Turbulent kinetic energy budgets of Cases 1 and 2 are shown in figure 14, in which
the profiles are scaled by bulk variables, ρmU 3

m/H . Here, Huang et al. (1995) used
a mixture of wall and bulk variables, τwUm/H , and Guarini et al. (2000) used wall
variables, ρwuτ/δv , for scaling the turbulent kinetic energy budget. The peak value
of the production term Pk (term 1 of figure 13) near the adiabatic wall is smaller
and its location moves to the centre of the channel, compared with that of Pk near
the isothermal wall (see figure 14b). The compressibility term in the turbulent kinetic
energy equation, Ck , and the turbulent kinetic energy dissipation rate per unit volume,
εk , are discussed in § 5.3 and § 5.4, respectively.
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Figure 14. Turbulent kinetic energy budgets: (a) Case 1 and (b) Case 2. The upper and
lower walls of Case 1 are isothermal. The upper and lower walls of Case 2 are adiabatic and
isothermal, respectively.

Next, we consider the budgets scaled by a mixture of local and semi-local variables,
〈ρ〉u3

τ∗/δv∗, for Cases 2I and 2A (see figure 15). Lechner, Sesterhenn & Friedrich (2001)
performed DNS of turbulent supersonic isothermal-wall channel flow at the same
parameters as Coleman et al. (1995) at improved resolution, using the DNS algorithm
based on a Padé (compact) finite-difference method, and reported that the production
and dissipation rates in the turbulent kinetic energy equation normalized by τwUm/H

were reduced compared to their incompressible counterparts. However, figure 15
shows that the production and dissipation terms of Cases 2I and 2A agree well with
the data of Case A. This indicates that the difference observed in the turbulent kinetic
energy budget scaled by ρmUm/H or τwUm/H is mainly due to the variable property
effect.

The mean kinetic energy budgets of Cases 1 and 2 are shown in figure 16.
We confirmed that the mean kinetic energy budget of Case 1 was not essentially
different from that of Case A, and that the difference between budgets near adiabatic
and isothermal walls for Case 2 was mainly due to the variable property effect.
The compressibility term in the mean kinetic energy equation, CK , and the viscous
dissipation per unit volume, εVK, are discussed in § 5.3 and § 5.4, respectively.

The internal energy budgets of Cases 1 and 2 are shown in figure 17, and the energy
(passive scalar) budgets of Cases A and B are shown in figure 18. For Cases A and
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Figure 15. Turbulent kinetic energy budgets in semi-local wall units: (a) Case 2I
and (b) Case 2A.

 

Figure 16. Mean kinetic energy budgets: (a) Case 1 and (b) Case 2.

B, the bulk velocity Um and the friction temperature Tτ at the isothermal wall are
used for scaling the energy budgets. The dissipation rates εk and εVK are irreversible
energy transfers from the turbulent kinetic and mean kinetic energies to the internal
energy, respectively. On the other hand, the energy transfer due to the dissipation rate
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Figure 17. Internal energy budgets: (a) Case 1 and (b) Case 2.

does not exist in incompressible turbulent flow with passive scalar transport, because
the viscous friction work does not appear in the energy (passive scalar) equation
of incompressible turbulent flow (cf. (B 3) and (A 3)). For Cases A and B, artificial
heat sources are added to the energy (passive scalar) equations instead of the viscous
friction work, where the heat source of Case A is twice that of Case B (see (B 4)). As
a result, the profiles of internal energy budgets of Cases 1 and 2 are different from
those of Cases A and B. A qualitative comparison of the internal energy budgets
between compressible and incompressible turbulent flows has no meaning, because
their normalizations are different. Note that the peaks of turbulent and molecular
diffusions do not appear near the adiabatic wall of Case B.

5.3. Compressibility terms of turbulent and mean kinetic energy budgets

The compressibility term of the turbulent kinetic energy equation, Ck , is almost zero
and has a very small value in the region very close to the wall (see figure 14). On
the other hand, the compressibility term of the mean kinetic energy equation, CK ,
has a small value in the region very close to the wall (see figure 16). In the present
simulations (M =1.5), the result that Ck is almost zero is supported by the previous
knowledge that the compressibility effect, like the pressure–dilatation correlation term,
is negligible for wall-bounded compressible turbulent flow (e.g. Coleman et al. 1995;
Huang et al. 1995; Guarini et al. 2000). Although some studies have been carried out
to clarify the reason why the compressibility effect is small near the wall (e.g. Sarkar
1995; Friedrich & Bertolotti 1997), its detailed mechanism is still an open question.
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Figure 18. Budgets of passive scalar transport equation: (a) Case A and (b) Case B.
The upper wall of Case B is adiabatic.

This is due to the lack of DNS data for quantitative investigation. Therefore, we first
clarify the dominant terms in Ck and CK . Then the roles of these terms with respect
to energy transfers are investigated.

The compressibility terms in Ck are shown in figure 19. The pressure–dilatation
correlation term Ck3 (term 7 in figure 13) and the additional compressibility term
Ck1 (term 2 in figure 13) are almost zero near adiabatic and isothermal walls. The
additional compressibility term Ck2 (term 3 in figure 13) is dominant in Ck , and it
has plus and minus values near isothermal and adiabatic walls, respectively. This
implies that the term Ck2 transfers turbulent kinetic energy to the mean flow near the
isothermal wall and transfers energy from the mean flow to the turbulent flow near
the adiabatic wall. This difference is explained as follows. The sign of Ck2, in which
the term 〈u′′

1〉∂〈τ12〉/∂x2 is dominant, depends on that of 〈u′′
1〉, because ∂〈τ12〉/∂x2 is

always negative. The value of 〈u′′
1〉 is equal to −〈ρ ′u′

1〉/〈ρ〉 (see (4.1)), which is positive
and negative near isothermal and adiabatic walls, respectively. As a result, the value
of Ck2 is negative and positive near isothermal and adiabatic walls, respectively. Note
that these energy transfers due to Ck2 are small as mentioned above.

The compressibility terms in CK are shown in figure 20. The term relating to the
pressure work (term 5 in figure 13), CK1, is dominant in CK , and it has minus and
plus values near isothermal and adiabatic walls, respectively. This means that the
term CK1 exchanges internal energy for mean kinetic energy near the isothermal wall
and exchanges mean kinetic energy for internal energy near the adiabatic wall. This
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Figure 19. Compressibility terms of turbulent kinetic energy equation: (a) Case 1
and (b) Case 2.

difference can be explained by the result that the value of the mean dilatation 〈d〉 is
positive and negative near adiabatic and isothermal walls, respectively (see Tamano
2002). Note that the negative and positive values represent the compression and
expansion of the fluid, respectively.

5.4. Dissipation terms of turbulent and mean kinetic energy budgets

In this section, we consider the irreversible energy transfers due to the turbulent
kinetic energy dissipation per unit volume εk and the mean kinetic energy dissipation
per unit volume εVK. Using the vorticity fluctuation ω′

i and (5.5), εk is rewritten as.

εk = 〈µ〉〈ω′
iω

′
i〉 − 2

3
〈µ〉〈d ′2〉 + 〈µ′ω′

iω
′
i〉 − 2

3
〈µ′d ′2〉 +

∂〈ui〉
∂xj

〈
µ′ ∂u′

i

∂xj

〉

+
∂〈uj 〉
∂xi

〈
µ′ ∂u′

i

∂xj

〉
− 2

3
〈d〉〈µ′d ′〉 + 2〈µ〉

〈
∂u′

i

∂xj

∂u′
j

∂xi

〉
+ 2

〈
µ′ ∂u′

i

∂xj

∂u′
j

∂xi

〉
. (5.9)

The enstrophy dissipation term εk1 = 〈µ〉〈ω′
iω

′
i〉, the dilatational dissipation term

εk2 = −(2/3)〈µ〉〈d ′2〉, the thermodynamic dissipation term εk3 = ∂〈ui〉/∂xj 〈µ′∂u′
i/∂xj 〉,

and the total dissipation εk , are shown for Case 2 in figure 21. The value of εk1 is
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Figure 20. Compressibility terms of mean kinetic energy equation: (a) Case 1 and (b) Case 2.

Figure 21. Turbulent kinetic energy dissipation per unit volume for Case 2.
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dominant in the dissipation εk , and the value of εk2 is almost zero. The ratio εk3/εk

is about 8% at x2/H = −0.98 for Case 2, therefore εk3 is not negligible in the region
very close to the isothermal wall (see Huang 1995; Huang et al. 1995), while it is
negligible near the adiabatic wall. We confirmed that the other terms of (5.9) were
negligible. The sum of the second and the eighth terms on the right-hand side of
(5.9) is the dilatational dissipation for homogenous compressible turbulent flow (see
Sarkar et al. 1991).

Using the equation ω′
iω

′
i = ∂u′

i/∂xj∂u′
i/∂xj − ∂u′

i/∂xj∂u′
j /∂xi , equation (5.9) is

rewritten as follows (see Huang 1995; Huang et al. 1995):

εk = 〈µ〉
〈

∂u′
i

∂xj

∂u′
i

∂xj

〉
− 2

3
〈µ〉〈d ′2〉 +

〈
µ′ ∂u′

i

∂xj

∂u′
i

∂xj

〉
− 2

3
〈µ′d ′2〉 +

∂〈ui〉
∂xj

〈
µ′ ∂u′

i

∂xj

〉

+
∂〈uj 〉
∂xi

〈
µ′ ∂u′

i

∂xj

〉
− 2

3
〈d〉〈µ′d ′〉 + 〈µ〉

〈
∂u′

i

∂xj

∂u′
j

∂xi

〉
+

〈
µ′ ∂u′

i

∂xj

∂u′
j

∂xi

〉
. (5.10)

The dissipation per unit mass, εc = εk/〈ρ〉, is divided into the leading-order term which
is the variable-density extension of the pseudo-dissipation used in the incompressible
flow, εci = (〈µ〉/〈ρ〉)〈∂u′

i/∂xj∂u′
i/∂xj 〉, and the remainder which explicitly involves

fluctuating dilatation or fluctuating viscosity, εcc = εc − εci . Terms 6ic and 6c
correspond to 〈ρ〉εci and 〈ρ〉εcc, respectively. The dissipations per unit mass, ε∗

ci ,
ε∗

cc and ε∗
c , which are normalized by uτ∗, 〈ρ〉 and 〈µ〉, are shown for Cases 2I and

2A in figure 22. The ratio ε∗
cc/ε

∗
c is about 11% at y∗ =5.2 for Case 2I, so that ε∗

cc, in
which the main contribution is the thermodynamic dissipation term, is not negligible
in the region very close to the isothermal wall, while it does not contribute near the
adiabatic wall. Figure 22 also shows that the scaling with the local variables collapses
the dissipation ε∗

c onto the data of the incompressible turbulent flow. We confirmed
that the dissipation scaled by the wall variables did not agree well with the data of
the incompressible turbulent flow.

We investigated the viscous dissipation per unit volume in the mean kinetic
energy budget εVK, which was divided into the variable-density extended term of
the pseudo-dissipation used in the incompressible flow (term 4ic in figure 13), εVKi =
〈µ〉(∂〈u1〉/∂x2)

2, and the remainder (term 4c in figure 13), εVKc = εVK−εVKi. We confirmed
that the term εVKc was almost zero near adiabatic and isothermal walls for compressible
turbulent flow (see Tamano 2002), therefore we ignore the energy transfer due to term
4c in figure 13.

5.5. Energy transfers near adiabatic and isothermal walls

The energy transfers near isothermal and adiabatic walls are summarized for
compressible turbulent flow in figure 23. Term 1 is the energy transfer from the
mean kinetic energy to the turbulent kinetic energy near adiabatic and isothermal
walls in compressible turbulent flow. The roles of terms 2, 3, 5 and 7 with respect
to compressibility are as follows (see § 5.3). Terms 2 and 7 do not contribute to
energy transfers near isothermal and adiabatic walls. Term 3, which has a very small
contribution to the energy transfer, transfers turbulent kinetic energy to the mean flow
near the isothermal wall and transfers energy from the mean flow to the turbulent
flow near the adiabatic wall. Term 5, which makes a small contribution to the energy
transfer, exchanges internal energy for the mean kinetic energy near the isothermal
wall and exchanges mean kinetic energy for the internal energy near the adiabatic
wall. The roles of terms 4 and 6 with respect to dissipations, εVK and εk , are as follows
(see § 5.4). Most of the energy transfers due to terms 4 and 6 are composed of the
variable-density extended terms of the pseudo-dissipation used in the incompressible
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Figure 22. Turbulent kinetic energy dissipation per unit mass in semi-local wall units:
(a) Case 2I and (b) Case 2A.

Figure 23. Non-negligible energy transfer of wall-bounded compressible turbulent flow: 1. Pk ,
3. Ck2, 4ic. εVKi, 5. CK1, 6c. 〈ρ〉εcc , 6ic. 〈ρ〉εci , lines as figure 13, (a) near the isothermal wall
(Case 1I or 2I) and (b) near the adiabatic wall (Case 2A).

flow (terms 4ic and 6ic). The term involving fluctuating dilatation or fluctuating
viscosity (term 6c) is not negligible close to the isothermal wall.

For wall-bounded incompressible turbulent flows with passive scalar transport, the
energy transfers due to terms 4ic and 6ic, which correspond to terms εVK and εk , do
not exist, and only energy transfer in the due to term 1, which has the same role as
in the compressible case, exists.
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Figure 24. Two-point correlation of streamwise velocity fluctuation: (a) streamwise
and (b) spanwise directions.

6. Near-wall turbulence structures
The streamwise and spanwise two-point correlations of streamwise velocity

fluctuations, Ru′
1u

′
1
(r∗

1 ) and Ru′
1u

′
1
(r∗

3 ), are shown in figure 24, where r∗
1 = r1/δv∗ and

r∗
3 = r3/δv∗ are the separations in the x1- and x3-directions, respectively. The two-point

correlations of Cases 2I, 2A, and A are calculated at y∗ = 9.0, 12, and 11, respectively.
The streamwise two-point correlations for compressible turbulent flow go to zero
within L1/(2δv∗) and do not depend on the thermal wall boundary condition. It is
found that the near-wall streaks of compressible turbulent flow do not become more
coherent than those of incompressible flow. Hence, Morkovin’s hypothesis is successful
in the near-wall streak structures. This was also confirmed by the profiles of the
skewness and flatness factors which are strongly related to the turbulence structure,
in addition to the countours of the streamwise velocity fluctuation on (x1, x3)-
planes (see Tamano & Morinishi 2002; Tamano 2002). Coleman et al. (1995) explained
the modification of the streak using the ratio of turbulent and mean time scales used
in the study of homogeneous turbulent shear flow by Lee, Kim & Moser (1990).
However, we examined the profiles of the time-scale ratio and confirmed that there
was no connection between the near-wall streak structures and the time-scale ratio.
To clarify the relationship between the streamwise two-point correlation and the
near-wall streak structure, more detailed examination in terms of the variations in
the time and space may be required. We confirmed that the streamwise two-point
correlations depended on the time and the wall-normal position for all cases in the
present results. Smith & Metzler (1983) and Kim, Moin & Moser (1987) reported
experimentally and numerically that the near-wall streaks had a mean spacing of
about 100 in wall units and increased with this distance from the wall for wall-
bounded incompressible turbulent flow. Figure 24(b) shows that the streak spacing
of compressible turbulent flow is about 100 in semi-local wall units and is almost the
same as for the incompressible case. The dependence of the near-wall streaks on the
Mach number will be considered in future work.

Next, we investigate the correlation coefficient between streamwise velocity and
temperature fluctuations, Ru′

1T
′ = 〈u′

1T
′〉/(〈u′

1
2〉1/2〈T ′2〉1/2 ). Guarini et al. (2000)

reported that the velocity–temperature correlations agreed well with the experimental
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Figure 25. Correlation coefficients between u′
1 and T ′ for Cases 2 and B.

and computational data on incompressible boundary layer flows because of weak
compressibility. On the other hand, Nicoud (1999) reported that the peak value of
the absolute velocity–temperature correlation near a heated wall was larger than that
of a correlation near the cold wall and larger than that of Kim & Moin (1989) for
incompressible turbulent flow. The correlations Ru′

1T
′ are shown for Cases 2 and B in

figure 25. The present results on the velocity–temperature correlation in the region
very close to the isothermal wall are almost unity, Ru′

1T
′ � 1.0, for both compressible

and incompressible turbulent flows, and their profiles are almost the same. The peak
value of the absolute correlation near the adiabatic wall of Case 2 is approximately
0.9, which is smaller than that near the isothermal wall. On the other hand, the
correlation |Ru′

1T
′ | near the adiabatic wall of Case B is approximately 0.5–0.6 and

is smaller than that of Case 2. This is because the absolute values of temperature
fluctuations near the adiabatic wall are very small for Case B. We confirmed that
the production term in the equation of the temperature variance was almost zero
near the adiabatic wall of Case B. The difference between Cases 2 and B near the
adiabatic wall is not attributable to the variable property effect. In other words,
Morkovin’s hypothesis is not applicable to the correlation coefficient between velocity
and temperature fluctuations near an adiabatic wall. We also examined the contours
of the streamwise velocity and temperature fluctuations on (x1, x3)-planes, and
confirmed that the low-speed streaks coincided with the low-temperature streaks near
the isothermal wall and existed in the high-temperature regions near the adiabatic
wall for compressible turbulent flow, while the corresponding relationship between
streamwise velocity and temperature fluctuations was not observed near the adiabatic
wall for the incompressible case (see Tamano & Morinishi 2002; Tamano 2002).

7. Conclusions
Direct numerical simulation of compressible turbulent channel flow between

isothermal and adiabatic walls has been performed at Mach number M = 1.5 and
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Reynolds number Re =3000. A direct numerical simulation of incompressible
turbulent channel flow with passive scalar transport between isothermal and adiabatic
walls was also carried out for comparison. The main results are as follows.

The Van Driest transformed mean velocities near adiabatic and isothermal walls
agree well with the data on incompressible turbulent flow. This can be explained by
using the non-dimensional heat flux and the friction Mach number. The logarithmic
region of the mean temperature near the isothermal wall does not appear for
compressible turbulent flow because of the effect of the viscous friction work, while it
appears near the isothermal wall in incompressible turbulent flow. And the difference
of the mean temperature between compressible turbulent flows near isothermal and
adiabatic walls is clarified.

The RMS temperature fluctuation profile scaled by the mean temperature is almost
the same as that of the RMS density fluctuation profile scaled by the mean density,
except that the RMS temperature fluctuation on the isothermal wall is zero. The wall-
variable scaling does not result in such a similarity between temperature and density
fluctuations. The difference between Favre and Reynolds averages on the Reynolds
shear stresses is negligible. The semi-local scaling provides a universal profile of the
Reynolds shear stress. On the other hand, the turbulent heat flux does not have a
universal scaling in this study. The near-wall asymptotic behaviour of the wall-normal
RMS velocity fluctuation for compressible turbulent flow is not equal to that of the
incompressible case, even if the mean density variation is taken into account for
the scaling. Thus, Morkovin’s hypothesis is not applicable to near-wall asymptotic
behaviour. The existing modified Reynolds analogies do not completely agree with
the data on compressible turbulent flow for adiabatic and isothermal walls because
of the influence of the opposite wall.

Although the compressibility term Ck of the turbulent kinetic energy equation has a
slight contribution to the energy transfer, the dominant term of Ck transfers turbulent
kinetic energy to the mean flow near the isothermal wall and transfers the energy
of the mean flow to the turbulent flow near the adiabatic wall. This difference is
due to the result that the correlation between the streamwise velocity and density
fluctuations is positive and negative respectively near isothermal and adiabatic walls.
The pressure–dilatation correlation term is almost zero near adiabatic and isothermal
walls. The term relating to the pressure work is dominant in the compressibility
term CK of the mean kinetic energy equation. It exchanges internal energy for mean
kinetic energy near the isothermal wall and also exchanges mean kinetic energy
for internal energy near the adiabatic wall. This difference can be explained by the
result that the value of the mean dilatation is positive and negative respectively near
adiabatic and isothermal walls, where the negative and positive values represent the
compression and expansion of the fluid, respectively. The thermodynamic dissipation
term is negligible near the adiabatic wall, while it is not negligible in the region
very close to the isothermal wall. On the other hand, the dilatational dissipation
near adiabatic and isothermal walls is almost zero. The energy transfer due to the
mean kinetic energy dissipation near adiabatic and isothermal walls in compressible
turbulent flow is mainly composed of the the variable-density extended term of the
pseudo-dissipation used in incompressible flow.

The two-point correlation of streamwise velocity fluctuations indicates that the
near-wall streak structures of velocity for compressible and incompressible turbulent
flows are comparable and independent of the thermal wall boundary condition, when
the variable property effect is taken into account. Morkovin’s hypothesis is thus
successful for the near-wall streak structures. In addition, the correlation coefficient



306 Y. Morinishi, S. Tamano and K. Nakabayashi

between velocity and temperature fluctuations indicates that Morkovin’s hypothesis
is not applicable to the correlation coefficient between velocity and temperature
fluctuations near the adiabatic wall.

The authors wish to thank Dr G. N. Coleman for providing the referenced data.
The computations performed on a FUJITSU VPP300 at the Center for Promotion
of Computational Science and Engineering, Japan Atomic Energy Research Institute,
are gratefully acknowledged.

Appendix A. Governing equations for compressible flow
The continuity, momentum and energy equations are

∂ρ

∂t
+

∂ρuj

∂xj

= 0, (A 1)

∂ρui

∂t
+

∂ρuiuj

∂xj

= − ∂p

∂xi

+
∂τij
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+ ρfi, (A 2)
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∂ρT uj
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1
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∂uj

∂xj

+ τij

∂ui

∂xj

− ∂qj

∂xj

]
, (A 3)

where the viscous stress tensor τij = µ(∂ui/∂xj + ∂uj/∂xi) − 2µδij ∂uk/∂xk/3 and the
heat flux qj = −κ∂T /∂xj . The driving force fi is given by

fi = −τwav
δi1/ (Hρm) , (A 4)

where τwav
= (〈τ12〉x1−x3

|x2 =H −〈τ12〉x1−x3
|x2 = −H )/2 . Viscosity µ is given by Sutherland’s

law:

µ

µiw

=
1 + S1/Tiw

T /Tiw + S1/Tiw

(
T

Tiw

)3/2

, (A 5)

where S1 is constant. The state equation is

p = cp(γ − 1) ρT/γ. (A 6)

A mean pressure gradient is imposed to drive the flow in the DNS of incompressible
turbulent channel flow. Although the driving force fi has the same role in the DNS
of compressible turbulent channel flow, it is not interpreted as the mean pressure
gradient, since pressure is given by the state equation (A 6) (see Coleman et al. 1995;
Huang et al. 1995).

Appendix B. Governing equations for incompressible flow
The continuity, Navier–Stokes and energy equations are

∂uj

∂xj

= 0, (B 1)

∂ui

∂t
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∂uiuj
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= − 1
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∂xi
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∂2ui
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, (B 2)

∂T
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+

∂T uj

∂xj
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κ
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∂2T

∂xj∂xj

+ Q. (B 3)
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The heat source Q is given by

Q = −qwav
/(ρcpH ), (B 4)

where qwav
= (〈q2〉|x2 =H − 〈q2〉|x2 = −H )/2.
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